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Abstract. We have computed electronic structures and total energies of circularly confined two-dimensional
quantum dots and their lateral dimers in zero and finite uniform external magnetic fields using different
theoretical schemes: the spin-density-functional theory (SDFT), the current-and-spin-density-functional
theory (CSDFT), and the variational quantum Monte Carlo (VMC) method. The SDFT and CSDFT
calculations employ a recently-developed, symmetry-unrestricted real-space algorithm allowing solutions
which break the spin symmetry. Results obtained for a six-electron dot in the weak confinement limit and
in zero magnetic field as well as in a moderate confinement and in finite magnetic fields enable us to draw
conclusions about the reliability of the more approximative SDFT and CSDFT schemes in comparison
with the VMC method. The same is true for results obtained for the two-electron quantum dot dimer as
a function of inter-dot distance. The structure and role of the symmetry-breaking solutions appearing in
the SDFT and CSDFT calculations for the above systems are discussed.

PACS. 71. Electronic structure of bulk materials – 73.21.-b Electron states and collective excitations in
multilayers, quantum wells, mesoscopic, and nanoscale systems – 85.35.Be Quantum well devices (quantum
dots, quantum wires, etc.)

1 Introduction

Quantum dots (QD) are man-made solid-state nanoscale
structures. As they show typical atomic properties they
are often referred to as artificial atoms [1]. The wavefunc-
tions, shell structure and the energy levels are usually
reminiscent of real atomic systems. Hund’s rules are of-
ten obeyed and at certain electron numbers the quantum
dots have increased stability corresponding to closed-shell
noble gas atoms.

Unlike for normal atoms, a wide variety of geometries
is possible by choosing appropriate materials and exter-
nal confinement: one-dimensional rods, two-dimensional
pancakes or three-dimensional spheres. Asymmetric po-
tentials such as ellipsoidal are possible and even quantum
dot molecules can be realized by combining two or more
quantum dots lying near each other. The versatile physics
of the quantum dot systems creates a promising field of
potential applications. The field effect transistors in com-
puters could be replaced by quantum-dot logic gates [2].
A double quantum dot ‘hydrogen’ molecule has been pro-
posed for a basic elementary gate in quantum comput-
ers [3]. In this component the electron spins are entangled
and serve as a qubit.

In this paper we concentrate on quantum dots realized
in a two-dimensional (2D) electron gas at the interface

a e-mail: hri@hugo.hut.fi

of a GaAs/AlGaAs semiconductor heterostructure. Elec-
trons in this region are confined by an external potential
which is usually assumed to be parabolic and their motion
is described by the effective-mass theory. The character-
istic energy and length scales are such that the electron-
electron interaction and the effect of the external magnetic
field have comparable energies. Therefore changes in the
electronic structure caused by magnetic interactions can
happen at magnetic fields of the order of a few teslas, only,
i.e. at fields attainable in laboratory environment.

Since QD’s are nanoscale systems quantum mechan-
ics is required for their accurate description. However, the
electronic structure of these systems is very hard or even
impossible to solve exactly even in the case of a few elec-
trons, and approximations must be used. Perhaps the most
widely used scheme in computational condensed matter
physics is the density functional theory (DFT) [4,5]. The
method uses the electron density as the basic variable and
the ground state properties depend only on this quantity.
The exchange and correlation effects between electrons
are often approximated by the local density approxima-
tion (LDA). The DFT has been generalized to systems of
non-zero spin polarization in the spin density functional
theory (SDFT) [6]. The DFT and the SDFT formulations
ignore the presence of currents induced by external mag-
netic field or spin polarization. Vignale and Rasolt intro-
duced the current-and-spin-density functional theory (CS-
DFT) [7], which is a self-consistent extension of the SDFT
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to arbitrarily strong magnetic fields for the non-relativistic
Pauli Hamiltonian. Therefore it is ideally suited for the
electronic structure calculations of QD’s in external strong
magnetic fields. The variational quantum Monte Carlo
(VMC) [8] method is another efficient method to solve the
electronic structure of a system of interacting electrons.
Its starts from analytic wave functions, the parameters of
which are optimized by using the variational principle and
random points in the evaluation of integrals.

Our main aim in this work is to study the reliabil-
ity of the SDFT and CSDFT schemes by comparing their
total energies with the corresponding VMC results. The
CSDFT reduces to the SDFT scheme when the effects of
the induced currents are ignored. The use of the SDFT
instead of the CSDFT is tempting, because it simpli-
fies the formalism and calculations [9]. Our results en-
lighten when this substition is justified and what are its
consequences. We consider two systems in our calcula-
tions: a single quantum dot with six electrons in an ex-
ternal parabolic circular potential, and a lateral quantum
dot ‘hydrogen’-like molecule comprising of two dot centra
and two electrons. Several authors have calculated prop-
erties of the six-electron single dot system in zero [10–14]
and finite magnetic [15,16] fields using different schemes.
Therefore it serves as a good benchmark test. The two-
electron quantum dot molecule has been considered by
Wensauer et al. using the SDFT [17] in zero field and by
G. Burkard et al. [18] in zero and finite magnetic fields
using the Heitler-London approximation and the Hund-
Mulliken molecular-orbital approach.

Our studies are directed towards three different
regimes. (i) In the case of the six-electron quantum dot
in zero magnetic field we consider the limit when the
parabolic confinement potential vanishes. (ii) Moreover,
in the case of the six-electron quantum dot with a finite
confinement, corresponding to typical experimental situa-
tions, we perform calculations as a function of increasing
external magnetic field. (iii) Finally, the results for the
quantum dot molecule are obtained as a function of the
inter-dot separation. The common feature for these three
systems is that single-particle energy levels approach each
other so that the electron-electron correlation overcomes
the effect of the kinetic energy in importance. For the
SDFT and CSDFT the result is the breaking of the spin
symmetry. This means that, although the external confine-
ment potential is the same for the spin-up and spin-down
electrons, the corresponding effective potentials including
the electron-electron interactions are different. The ensu-
ing spin-densities are then different, and e.g., in the case
of a circular dot the total electron density is not circu-
lar. This kind of spin density waves was considered during
the advent of the SDFT as a desired flexibility of the the-
ory [6], but their more recent appearance in the context
of electronic structures of quantum dots has raised discus-
sion about their interpretation [19–23]. In order to allow
the symmetry breaking in our SDFT and CSDFT calcu-
lations, we have applied in the calculations a recently de-
veloped symmetry-unrestricted real space approach [24].
The testing of this implementation is also one of our goals.

The outline of the paper is the following: in Sec-
tion 2 we first briefly describe the underlying many-
body physics of the systems under consideration. Then we
present the basic ideas of the CSDFT, SDFT, and VMC
approaches. Computational methods including the real-
space Schrödinger equation solver are described in Sec-
tion 3. The results for the single dot system and the double
dot system can be found in Sections 5 and 6, respectively.
The results are summarized in Section 7. In this paper the
unit of length is the reduced Bohr radius a∗0 = ~2ε/m∗e2.
In the case of GaAs the dielectric constant ε = 12.4 and
the effective mass m∗ = 0.067me so that a∗0 ≈ 9.79 nm.

2 Formalisms

2.1 The model Hamiltonian

Throughout the paper we consider vertical quantum dots
made in the planar heterostructure of GaAs/AlxGa1−xAs.
The electron density has a sharp peak in the interface
region giving rise to the so-called quasi-two-dimensional
electron gas (2DEG). Since the confining potential per-
pendicular to this conducting layer is strong compared to
the confining potential parallel to the plane, we consider
the system to be essentially two dimensional, i.e. the elec-
tron density n(x, y, z) = n(x, y)δ(z), where z is normal to
the plane of interface. We use the effective-mass theory to
describe electrons moving in the lattice of the Ga and As
atoms.

The Hamiltonian for the system of N electrons mov-
ing in the external potential and magnetic field which is
applied perpendicular to the plane of the 2DEG (in the
z-direction) is

H =
1

2m∗

N∑
i=1

[−i~∇i + Aext(ri)]
2

+
1
2

∑
i6=j

e2

|ri − rj |
+

N∑
i=1

Vσ(ri), (1)

where the spin index σ =↑, ↓. Aext = 1
2B(yux−xuy) is the

vector potential of the external magnetic field B. The spin-
dependent scalar potential consists of a spin-independent
external potential Vext and the Zeeman energy,

Vσ(ri) = Vext(ri) + g∗µBBsz,i, (2)

where g∗ is the effective gyromagnetic ratio (reduced
Landé g-factor), which has the value of −0.44 for
GaAs [25]. µB is the Bohr magneton and sz,i = ± 1

2 for
σ =↑, ↓, respectively.

The wavefunction of the system is 2N -dimensional so
that the many-body problem becomes computationally
too difficult and time consuming to solve exactly even in
the case of just a few electrons. Therefore we need to make
approximations to make the problem computationally fea-
sible for the present day computers.
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2.2 Spin-density-functional
and current-and-spin-density-functional theories

In the current-and-spin-density-functional theory (CS-
DFT) by Vignale and Rasolt [7] the Hamiltonian (1) leads
to a set of generalized Kohn-Sham equations which have to
be solved self-consistently. They include the one-particle
Schrödinger equation[

p2

2m∗
+

e

2m∗
(p · (Aext + Axc)

+(Aext + Axc) · p) + Vσ(r)
]
ψi,σ = εi,σψi,σ, (3)

where p = −i~∇, Aext(r) is the vector potential corre-
sponding to the external magnetic field in the z-direction,
and Axc is the so-called exchange-correlation vector po-
tential. The scalar potential Vσ is calculated as

Vσ(r) =
e2

2m∗c2
(Aext + Axc)2 + Vext(r) + VHartree(r)

+ VZeeman + Vxc,σ(r), (4)

where Vxc,σ is the exchange-correlation scalar potential.
The Hartree potential reads as

VHartree(r) = e

∫
n(r′)
|r− r′|dr′, (5)

where n(r) = n↑(r) + n↓(r) is the total electron
density. The Zeeman potential is just a constant,
VZeeman = g∗µBBsz,i. Both the vector and scalar
exchange-correlation potentials depend on the spin nσ and
paramagnetic current jp,σ densities. They are obtained
from the one-particle wavefunctions as

nσ(r) =
∑
i

|ψi,σ(r)|2, (6)

jp,σ = − i~
2m∗

∑
i

[
ψ∗i,σ∇ψi,σ − ψi,σ∇ψ∗i,σ

]
(7)

where the summations are over occupied states.
The total energy of the system with given nσ and jp,σ

is obtained from the functional

Etot[nσ, jp,σ] =
∑
i,σ

εi,σ −
e2

2

∫ ∫
n(r)n(r′)
|r− r′| drdr′ (8)

−
∑
σ

∫
nσ(r)Vxc,σ(r)dr

−e
c

∑
σ

∫
jp,σ(r) ·Axc,σ(r)dr +Exc[nσ, jp,σ].

Following Vignale and Rasolt [7] we obtain the scalar
and vector exchange-correlation potentials Vxc,σ and Axc

as functional derivatives of the exchange-correlation en-
ergy with respect to the spin and current densities,

respectively. In the scheme the exchange-correlation en-
ergy of the uniform 2DEG per electron in uniform mag-
netic B is needed. This is obtained from the B = 0 re-
sults by Tanatar and Ceperley [26] and from the B =
∞ results by Levesque, Weis and MacDonald [27] using
the interpolation form by Ferconi and Vignale [28]. The
correlation energy for intermediate spin polarizations is
obtained by interpolating between the results for the spin-
compensated and totally spin-polarized gases as in the
work by Koskinen et al. [19]. Numerical instabilities in
determining Axc are avoided by the convolution form in-
troduced by Koskinen et al. in a more recent work [29].

The effect of currents on the exchange-correlation en-
ergy is due to distortion of the wave function. If the effect
of currents can be assumed small the exchange-correlation
vector potential Axc can be neglected and the Kohn-Sham
equations of the CSDFT are reduced to the SDFT Kohn-
Sham equations. Especially, the one-particle Schödinger
equation reads then as{

1
2m∗

[
p +

e

c
Aext(r)

]2

+
∑
σ

Vσ(r)

}
ψi,σ = εi,σψi,σ,

(9)

where the scalar potential

Vσ(r) = Vext(r) + VHartree(r) + VZeeman + Vxc,σ(r). (10)

Above, the exchange-correlation potential Vxc,σ depends
now on the spin densities, only. The CSDFT formalism,
explained above, reduces to the local spin density approxi-
mation (LSDA). Further, if the spin densities are assumed
equal, n↑ = n↓ , the SDFT-LSDA formalism reduces to the
density functional theory (DFT) within the local density
approximation (LDA).

According to a theorem by Gunnarsson and
Lundqvist [6] the ground-state energy of each specified an-
gular momentum and spin symmetry can be found in the
density-functional formalism. The exchange-correlation
functional Exc in this theorem, however, should depend on
the symmetry of the problem. In the absence of a recipe
how to choose this Exc in the actual calculations we have
chosen to use the uniform electron-gas data for Exc. Due
to the LSDA-type local approximations we can specify
only the the quantum number Sz of the z-component of
the total spin but not the quantum number S of the to-
tal spin from the occupation numbers of the eigenstates.
In the calculations, we enter Sz explicitly by occupying
the N↑ = N/2 + Sz and N↓ = N/2 − Sz lowest spin-
up and spin-down eigenstates, respectively. The quantum
number Lz of the z-component of the total angular mo-
mentum can then be calculated from the angular momenta
numerically determined for the occupied states. Accord-
ing to Hirose and Wingreen [21] this procedure may result
in a state which is a mixture of several eigenstates corre-
sponding to different S and L quantum numbers and the
resulting spin densities break the rotational symmetry of
the problem.
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3 Computational methods

The Kohn-Sham equations in the SDFT and CSDFT are
solved self-consistently. In the SDFT we first insert an ini-
tial guess for the scalar potential and solve for the single-
particle Schrödinger equation. In the CSDFT an initial
guess for the exchange-correlation vector potential must
also be provided. We have used the bare external poten-
tials Vext and Aext to initiate the iterations. Then we com-
pute the new potential using the wavefunctions of the oc-
cupied states and solve the Schrödinger equation again
using this new potential. This procedure is repeated un-
til the potentials and the wavefunctions have converged.
In order to stabilize the iteration process towards self-
consistency we have mixed the new potential calculated
after solving the electronic structure with the input po-
tential of the iteration and also with that of the previous
iteration using the scheme by Koskinen et al. [29]. The
mixed potential is then used as the input potential for
the next iteration. In order to avoid covergence difficulties
due to nearly degenerate states close to the Fermi level
we occupy in equations (6, 7) the one-particle states ac-
cording to the Fermi-Dirac distribution corresponding to
a finite temperature. The temperature is lowered but kept
finite towards the end of the iteration to obtain a good
approximation for the ground-state energy.

The one-particle states are solved from the Schrödinger
equation (9) in real space using a recently developed multi-
grid method [24]. The values of the different functions
are presented using two-dimensional point grids. The par-
tial differential equations are discretized using central fi-
nite differences. The real-space solver uses the Rayleigh
quotient multigrid method (RQMG), which is applied di-
rectly to the minimization of the Rayleigh quotient of the
type 〈ψ|H|ψ〉/〈ψ|B|ψ〉 on the finest grid of the multigrid
method. RQMG was originally developed to find the low-
est eigenenergy and the ensuing eigenfunction [30], but the
method has been extended to the simultaneous solution of
several lowest eigenstates [24]. The main idea of the multi-
grid approach is to use simple relaxation methods, such
as the Gauss-Seidel method, in grids of fine and coarse
spacing to eliminate the high and low-frequency spatial
oscillations of the error, respectively. A converged solu-
tion can be obtained usually in a fraction of the iterations
normally needed for basic relaxation schemes employing
only the finest grid.

In our calculations we usually solve all the states be-
low the Fermi level and a few states above the Fermi level.
This allows the finite temperature to be applied to the sys-
tem and stabilizes also the multigrid solution itself for the
occupied states [24]. Compared to the traditional plane-
wave solvers the advantage of using a real-space solver is
that periodic boundary conditions are not necessary and
that the grids can be refined in the regions where greater
accuracy is needed. Moreover the real-space methods are
more suitable for parallel computing by using domain de-
composition.

The Hartree energy is solved in our calculations by
approximating the integrals in equation (8) by a sum over

all the grid points (i, j)∫ ∫
n(r)n(r′)
|r− r′| drdr′ ≈

∑
i,j

∑
i′ 6=i,j′ 6=j

n(i, j)n(i′, j′)
|r(i, j)− r(i′, j′)|h

4

+
∑
i,j

2πh3n2(i, j)√
π

(11)

where h is the grid spacing and the divergence of the in-
tegral as |r − r′| → 0 is avoided by adding an on-site
term, i.e. the last term above. The on-site term is obtained
by an explicit approximative integration over a uniformly
charged disk centered at the gridpoints. The radius of the
disk is h/

√
π and the electron density on the disk is n(i, j).

The on-site term adds to the accuracy of the numerical
integration. If the number of gridpoints is not excessively
large, the procedure for the Hartree energy (and poten-
tial) is simple and fast in comparison with the total com-
putational work, spent mainly in the solution of the one-
particle Schrödinger equation with the multigrid method.
In our case this corresponds to about 1282 ' 16 000 grid-
points, a grid which we have found to give numerically
accurate results for the systems considered in this work.

4 Variational quantum Monte Carlo

For comparison, a set of variational quantum Monte
Carlo [31] (VMC) calculations were performed. In a VMC
study, some initial guess must be invented for the wave
function. This trial wave function has free adjustable pa-
rameters, Ψ = Ψ({αi}), which are optimized to minimize
the total energy. In the case of a single parabolic quantum
dot, high symmetry fixes the single-particle part of the
wave function, and free parameters adjust the electron-
electron correlation part only.

In this study, the minimization process of variational
parameters was performed using stochastic gradient ap-
proximation [32], which is tailored to minimize a function
whose values are superimposed by statistical noise. The
speed of the procedure can be greatly increased by using
analytic expressions for certain derivatives [33], and as a
result a single VMC run with full two-parameter mini-
mization and calculation of selected observables is a mat-
ter of a few minutes on a regular workstation.

5 Single six-electron dot

The CSDFT and SDFT methods are used to calculate
the electronic structure of a six-electron parabolic quan-
tum dot in GaAs. In the calculations we have chosen the
confining potential to be parabolic

Vext(r) =
1
2
m∗ω2

0r
2, (12)

where ~ω0 is the confinement strength. There are mainly
two reasons which make this system particularly interest-
ing. First of all, it corresponds to the smallest dot size
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for which there are two classically stable crystalline struc-
tures: a pentagonal ring with one electron at the centre
(the (5,1) electron configuration), and a sixfold ring (the
(6,0) electron configuration) [35]. Secondly, it corresponds
to a magic configuration of a 2D harmonic well. In other
words, the energy shells are fully closed and the Fermi gap
is particularly large.

5.1 Zero magnetic field and the weak confinement
limit

At first we omit the magnetic field and examine the system
as the confinement strength ~ω0 is lowered. In Figure 1 we
show our SDFT results for the energy difference between
the paramagnetic (Sz = 0) and the polarized (Sz = 3)
spin states as a function of the confining potential. The
results are compared with those obtained by the VMC by
three of the present authors in a previous work [13]. In the
SDFT calculations the confinement can be set to 0.1 meV
without problems in the convergence. The energy differ-
ence is clearly greater in the SDFT results than in the
VMC ones. However, one should bear in mind that the
values are differences between total energies which are of
the order of two or three decades larger in magnitude. At
low confinement both the methods give the spin-polarized
state as the ground state. According to the VMC the tran-
sition occurs at about 0.28 meV whereas in the SDFT the
confinement has to be lowered to about 0.18 meV before
the polarization takes place.

The next object of interest is the spontaneous symme-
try breaking of the spin densities. The concept of spin den-
sity waves (SDW) was first introduced by Overhauser [36],
who proved that the Hartree-Fock ground state of the ho-
mogenous electron gas at low electron densities is not the
usual paramagnetic state. Instead it is possible to con-
struct a spin density wave with a lower total energy. This
energy difference arises from the lowering of the exchange
energy which is only partially compensated by the rise of
the kinetic energy, leading to a static SDW.

Our SDFT calculations give for the six-electron dot
the SDW behavior as the confinement is lowered below
~ω0 ≈ 0.45 meV. Figures 2 and 3 show the gradual de-
velopment. Above the transition point the total electron
density of the Sz = 0 ground state has a (6,0)-like electron
configuration, i.e. there is a minimum of the density in the
centre and a maximum at a finite radius, as depicted in
Figure 2 for ~ω0= 0.6 meV. The polarized state, Sz = 3,
corresponding to the first excited state, has a (5,1)-like
configuration, i.e. the electron density has a maximum in
the centre and a less pronounced maximum at the dot
radius. When the confinement is lowered, the relative am-
plitude of the SDW grows rapidly as shown in the top row
of Figure 3 for the spin density. Actually, the maximum
value of the (spin) density grows at the beginning of the
localization in spite of the weakening confinement. The
spin-up and spin-down densities are symmetrically cou-
pled with each other resulting in a SDW-like polarization,
and the ensuing total electron density shows localization
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Fig. 1. Six-electron dot. The energy difference between the
spin polarized Sz = 3 and the paramagnetic Sz = 0 spin
states as a function of the confinement. The dots are the SDFT
results, the solid line corresponds to the VMC results taken
from reference [13]. The crosses mark the results of the spin-
compensated DFT-LDA calculations.

around six maxima as depicted in the bottom graph of
Figure 3.

We have studied in the SDFT the effects of the (si-
multaneous) spin and circular symmetry breaks on the
total energy of the Sz = 0 state and on the energy differ-
ence between the Sz = 3 and Sz = 0 state. This is done
by performing for the Sz = 0 state symmetry conserv-
ing DFT calculations within the LDA. Note that in our
calculations for the Sz = 3 state the circular symmetry is
conserved. The symmetry break in the Sz = 0 state lowers
the total energy so that the difference between the sym-
metry breaking and the symmetry conserving solutions
increases with decreasing confinement. The difference is
rather small on the energy scale of Figure 1, for example
for ~ω0 = 0.41 meV it is 0.016 meV. However, requiring
the symmetry conservation leads to an important quali-
tative effect. Namely, that the energy difference between
the Sz = 3 and Sz = 0 states does not show a minimum in
the confinement range for which we have been able to ob-
tain converged results, but the difference seems to increase
toward to the zero confinement limit (Fig. 1). Thus, the
symmetry breaking solution with spatial regions of spe-
cific spin densities describes better the low confinement
limit than the symmetry-conserving solution in which the
spin-up and spin-down densities compensate each others
at every point.

It is interesting that after the symmetry break one can
see in the total electron density a maximum at the centre
of the dot (see the bottom graph of Fig. 3). It becomes
even clearer as the confinement is still lowered. This un-
expected behavior is due to the eigenstate structure con-
sisting of a non-degenerate and doubly-degenerate states
for each spin direction. The non-degenerate states have a
maximum at the centre of the dot whereas the doubly-
degenerate states give the main contributions to the six
maxima at the radius of the dot. Below the confinement
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Fig. 2. Six-electron dot with ~ω0 = 0.6 meV. The total electron densities for the Sz = 0 and Sz = 3 spin states. The maximum
amplitudes are 0.011 and 0.015 a∗−2

0 , respectively. The side length of the region is 64 a∗0.

Fig. 3. Six-electron dot in the Sz = 0 state. The top row gives the spin densities for ~ω0 = 0.45 and 0.3 meV. The maximum
values are 0.005, and 0.0044 a∗−2

0 , respectively. The bottom graph gives the the total electron density for ~ω0 = 0.2 meV. The
maximum value is 0.0038 a∗−2

0 . The side lengths of the regions shown are 70 and 80 a∗0 for the confinements of 0.45 meV and
0.3 meV, respectively, and 100 a∗0 in the bottom graph.

of ~ω0= 0.18 meV the Sz = 3 state is the ground state
with a (5,1)-type electron density similar to that shown
in Figure 2. One would expect the electrons to localize
around their classical positions, namely in a pentagonal
ring, as the electron density is lowered, and form a Wigner
molecule. However, SDFT leads to difficulties at the low
density limit as the correlation effects begin to dominate.

Spin density waves arising from SDFT calculations
were observed in quantum dots by Koskinen et al. [19].
They found that static spin density waves can occur at low
densities of the electron gas. In the case of filled shell QD’s
the onset of the SDW-like state was obtained at relatively
low confinement, e.g., at ~ω0 < 0.7 meV for a six-electron
dot in agreement with our results. For larger dots, e.g., for
N = 24 or 34, they found that the SDW state with Sz = 0
becomes even lower in energy than the states obeying the
Hund rule. Their results have been criticized by Hirose and
Wingreen [21], who found the same breaking of Hund’s
rule but concluded that the SDW states are artifacts of
broken spin symmetry in density-functional theory.

The classical crystallization of a six-electron parabolic
quantum dot has been studied by unrestricted Hartree
Fock (HF) calculations [12]. In these calculations the para-
magnetic state, Sz = 0, was shown, in contrast with our

SDFT results, to depict a crossover from a (6,0) arrange-
ment to a (5,1) geometry at ~ω0 ≈ 1.5 meV. Reimann
et al. [11] found by configuration interaction calculations
that the true ground state is unpolarized with the (6,0)
symmetry if ~ω0 > 1 meV. This supports the results by
Egger et al. [10] obtained by path integral Monte Carlo
simulations. In the previous VMC calculations [13] the
system spin-polarizes below ~ω0 ≈ 0.28 meV, and when
the confinement strength is reduced further the electrons
begin to localize to the classical (5,1) configuration. The
total energies of the Sz = 0 and Sz = 3 spin states ob-
tained by exact diagonalization [11] agree with the VMC
results of Figure 1 for confinements ~ω0 > 0.3 meV. How-
ever, the exact diagonalizations of Reimann et al. were
limited to ~ω0 > 0.3 meV, and they could not reach
the regime where the VMC results show spin polariza-
tion. Reimann et al. [11] also performed SDFT calcula-
tions, the results of which are in a good agreement with
the present ones for confinements ~ω0 > 0.3 meV. How-
ever, they do not consider weaker confinements where the
spin polarized Sz = 3 state is lower in energy than the
paramagnetic Sz = 0 state. This confinement region is
numerically demanding and the results may depend on
the type of numerical solution of the SDFT problem.
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Reimann et al. use the plane wave expansion in contrast to
our real-space approach. The unrestricted HF calculations
by Yannouleas and Landman [22] show spin polarization,
spontaneous symmetry breaking and electron localization
already when the confinement has decreased to the value
of ~ω0 ≈ 1.1 meV. This value is in clear disagreement with
the VMC result of 0.28 meV. The SDFT predicting the
transition at 0.18 meV seems to be an improvement over
the unrestricted HF.

5.2 Uniform magnetic field

We have studied the effect of an external uniform mag-
netic field on the electronic structure of the N = 6 quan-
tum dot using the CSDFT, SDFT and VMC methods.
The magnetic field is applied perpendicular to the plane
of 2D electron gas (in the direction of the z-axis). The
confinement strength is chosen to be ~ω0 = 5 meV. This
is a weak potential compared to real atomic systems and
makes the correlation phenomena in the system relatively
important. The magnetic length (lB =

√
~/eB ≈ 26 nm

at B = 1 T) is also comparable to the dot dimension
(about 50 nm) causing transitions as the magnitude of
the field is changed.

In the VMC calculation, two different methods are
used to construct the many-body wave function. The
method used in higher fields (beyond the maximum-
density droplet) is explained in reference [37], and in lower
fields, the Slater-Jastrow form is used:

Ψ = D↑D↓J . (13)

Here D↑(↓) is a Slater determinant for spin up (down)
electrons, and J is a Jastrow factor responsible for cor-
relations. The determinants are filled with Fock-Darwin
single-particle states [38] in such a way that only compact
many-body states are obtained. Compact states are de-
fined as states that have no gaps in occupation numbers
nL = (n + l)/2 and nI = (n − l)/2, where n is the shell
index and l is angular momentum quantum number [39].

The Jastrow factor J is a pair correlation function, and
of the form:

J(R) =
∏
i<j

exp
(

bijrij
1 + aijrij

)
, (14)

where bij ’s are determined by cusp conditions, and aij
are variational parameters. Only two different parameters
were used, a↑↑ for parallel-spin electron pairs, and a↑↓ for
antiparallel pairs. These parameters were optimized sepa-
rately for each magnetic field and total spin value. In sim-
ilar studies [40] this form of the Jastrow factor has been
shown to be able to capture almost all of the correlation
energy of small systems.

In the CSDFT and SDFT calculations we find that
even if the external potential is circularly symmetric the
internal effective potential Vσ can be nonsymmetric and
break the spin symmetry. This is due to the localization
of the electrons to different regions in space. The local-
ization increases the kinetic energy but in favorable cases

this effect is smaller than the lowering of the exchange-
correlation energy. If the state is not circularly symmetric
the wavefunctions are not pure eigenstates of the Lz oper-
ator. Therefore the broken circular symmetry is seen from
the calculated Lz as a non-integer number.

The ground state energies corresponding to the CS-
DFT, SDFT, and VMC calculations and different values
for the total Sz are shown in Figure 4 as functions of
the external field. In the Sz = 0 case, the CSDFT cal-
culations were done also by forcing the spin densities to
be equal and thereby to preserve the spin symmetry. The
scheme is analogous to the DFT-LDA and it is therefore
denoted as the CSDFT-LDA. Up to the medium fields of
4 T the different schemes give rather consistent energy
values for the Sz = 0, Sz = 1 and Sz = 2 configurations.
In the high fields the CSDFT gives energies which are
lower than those obtained with the VMC for the Sz = 0
configuration. Much of this effect is due to the broken
symmetry lowering the total energy of the system. This
can be seen from Figure 4a where the forced spin sym-
metry of the CSDFT-LDA calculations brings the results
closer to the VMC ones. The Lz values obtained from the
CSDFT calculations are also given in Figure 4 so that the
magnetic field values at which Lz changes are indicated
by arrows. The regions of non-integer Lz, denoted by SB,
indicate broken circular symmetry. In these regions Lz in-
creases gradually starting from the value of the previous
region. It should be noted that the minimum energy state
is always circularly symmetric.

The minimum energy over all (circularly symmetric)
configurations is plotted in Figure 5. The overall agree-
ment between the CSDFT and VMC results is good. It
is striking that for the Lz = 6, Sz = 0 and Lz = 15,
Sz = 3 regions the methods give results in an astonish-
ing agreement. The latter region is the MDD domain in
which all the adjacent single-electron states from Lz = 0
to Lz = 5 are occupied with one spin-up electron resulting
in a totally spin-polarized system. Similarly in the Lz = 6,
Sz = 0 domain all the adjacent single-electron states from
Lz = 0 to Lz = 2 are occupied with two electrons re-
sulting in a spin-compensated system, which is a MDD
for both spin-up and spin-down electrons. These two re-
gions are characterized with compact electron densities
which are rather flat in the interior of the quantum dot.
In the region where the minimum energy configuration is
Lz = 10, Sz = 2 the CSDFT, SDFT and VMC results
differ more from each other. Thus we can conclude that
the exchange-correlation functionals are surprisingly ac-
curate for the two limits, the spin-compensated and the
spin-polarized electron gas but there are more problems in
constructing an exchange-correlation functional for partial
spin polarizations. The methods give consistent B values
for the transition points. However, in the SDFT and in
the VMC a transition occurs at ≈ 4.0 T to a state with
Lz = 7, Sz = 1 which is absent in the CSDFT. The rea-
son for the difference is that the energies of the Lz = 10,
Sz = 2 states are about 0.5 meV lower in energy than
the corresponding states in the VMC and in the SDFT.
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Fig. 4. Six-electron quantum dot ~ω0 = 5 meV. Total energy as a function of the magnetic field for the different Sz values. The
solid line is the CSDFT energy, the dashed line is the VMC energy and the dotted line is the SDFT energy. The dash-dotted line
in the graph (a) corresponds to the CSDFT-LDA calculations using spin-compensation, i.e. forcing the spin-up and spin-down
densities to be equal. The arrows denote the transition points in the CSDFT results between the different (−Lz) states given
by italic numbers. SB means the broken circular symmetry and a non-integer (Lz) value. In the case Sz = 0 the VMC result in
high B is significantly higher than in other calculations. This is due to the restriction of using only compact states in the VMC
study.

0 1 2 3 4 5 6 7 8 9 10 11
89.5

90

90.5

91

91.5

92

92.5

93

93.5

94

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

B[T]
0

90

91

92

93

94

E
 (

N
=

6)
 −

 6
 h

   
   

  [
m

eV
]

h
ω

(7,1)

(6,0)

(15,3)

CSDFT

VMC

(0,0)

(3,1)

(10,2)

(21,3)

SDFT

8 1042 6

Fig. 5. Six-electron quantum dot ~ω0 = 5 meV. Ground state
energy (minus 6 ~ωh = 6 ~

p
ω2

0 + (ωc/2)2, where ωc = eB/m∗

is the cyclotron frequency) as a function of magnetic field. The
solid line is the CSDFT result, the dashed line is the VMC en-
ergy and the dash-dotted line is the SDFT energy. The transi-
tion points between the (−Lz, Sz) states in the CSDFT results
are marked with arrows. In the VMC and CSDFT results there
is one more transition at ≈ 3.8 T to the state with Lz = −7,
Sz = 1 (left dashed arrow). In both schemes this state changes
to the Lz = 10, Sz = 2 at ≈ 4.1 T (right dashed arrow).

The differences reflect again difficulties in constructing an
exchange-correlation functional of general validity.

In the CSDFT and in the SDFT there is a transition
from the MDD state to the Lz = 21, Sz = 3 state at B ≈
10 T . The corresponding VMC transition occurs at B ≈
9 T . In this beyond-MDD region we find that it is difficult
to get converged results with the CSDFT method. The
problem is less severe with the SDFT than the CSDFT,
since in the former the self-consistency condition includes
only the scalar potential whereas in the latter also the
exchange-correlation vector potential has to be solved self-
consistently. Due to poor convergence we omit the excited
Sz = 2, Sz = 1 and Sz = 0 states from the CSDFT results
in this domain. The CSDFT Sz = 3 states converge to a
good accuracy up to the field strength of B = 11 T by
applying a finite temperature to the system. This shifts
the total energy curve to the right by about 1.0 T (Fig. 5).

6 Double dot

Finally, we consider the system of two laterally coupled
quantum dots at the interface of the GaAs/AlGaAs het-
erostructure. The dots contain one electron each, so that
the system is reminiscent of the hydrogen molecule. The
dots are considered to be located near each other which
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Fig. 6. Two-electron double dot. The confinement strengths of the dots are ~ω0 = 3 meV. (a) Spin densities along the axis
joining the dot centra for the inter-dot separations of 3 a∗0 (solid curve) and 6 a∗0 (The dashed curve is the spin up-density and
the dash-dotted curve is the spin-down density). (b) The corresponding effective potentials for the inter-dot separations of 3 a∗0
(solid curve) and 6 a∗0 (dashed curve. Only the spin-up potential is shown. The spin-down potential is a mirror image of the
spin-up potential).

allows the tunneling of electrons between the dots. An ex-
ternal magnetic field perpendicular to the plane of the 2D
electron gas is applied. We calculate the electronic struc-
ture of this system using the CSDFT and the VMC.

In the calculations for the magnetic field response of
this double dot system we have chosen the external po-
tential to be a quartic polynomial [18]

V (x, y) =
m∗ω2

0

2

[
1

4a2
(x2 − a2)2 + y2

]
, (15)

where the centra of the dots are at x = ±a . The interdot
distance d = 2a. Near the dot centra the polynomial sep-
arates into two harmonic wells with the confinement ~ω0.
Between the dots there is a potential barrier of the height
of V = 1/8m∗ω2

0a
2. In order to compare the results to

those by Wensauer et al. [17] we have also used in the
zero-B-field case the model potential

V (r) =
1
2
m∗ω2

0min
[
(r− a)2, (r + a)2

]
. (16)

In our calculations we have chosen ~ω0 to be 3 meV. The
Hamiltonian of the system is the same as in equation (1)
and the Kohn-Sham equations in the CSDFT are given in
the Section 2.2.

We have performed unrestricted CSDFT calculations
and allowed the spin density to break the symmetry of the
problem by localizing the electrons if it lowers the total
energy. Thus, in the present system the broken symmetry
means that in the Sz = 0 total spin state the effective
potential for the spin up electron has the global minimum
at one of the two dot centra whereas there is only a local
minimum at the adjacent dot centre. For the spin down
electron the dots have changed their roles. This is shown
in Figure 6 for the double dot in zero magnetic field. The
symmetry breaking is again due to the lowering of the
exchange-correlation energy in LSDA as the spin polar-
ization increases. This energy lowering overcomes the in-
crease in the kinetic energy due to the localization. The
symmetry of the wavefunctions can be preserved by using
the spin-compensated LDA instead of the LSDA.
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Fig. 7. Two-electron double dot. The confinement strengths
of the dots are ~ω0 = 3 meV. (a) Zero-B-field total energy as
a function of the inter-dot separation d. The SDFT energies of
the Sz = 0 and Sz = 1 states are given by the solid and dashed
curves, respectively. The cusp in the SDFT energy curve is due
to the transition to the symmetry-breaking solution. The en-
ergy corresponding to the symmetry-preserving DFT is shown
as the dash-dotted curve. (b) The singlet-triplet energy sepa-
ration as a function of inter-dot distance. The SDFT and the
VMC results are denoted by the solid curve and the ×-marks,
respectively. The discontinuity in the SDFT energy curve is
due to the transition to the symmetry breaking solution. The
energy separation corresponding to the symmetry-preserving
DFT is shown as the dashed curve.

In Figure 7 the zero-B-field SDFT and DFT total en-
ergies and the singlet-triplet separation are plotted as a
function of the inter-dot distance. We let the Sz = 0 and
Sz = 1 states of the SDFT or DFT calculations to repre-
sent the singlet and triplet states, respectively, although
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in these theories we cannot define the total spin S of the
two electrons. However, the fact that density-functional
theories give the lowest energy states of each different
spin symmetry should give credence to our identification.
The results were calculated using equation (16) for the
external potential. The density-functional Sz = 0 solution
splits into symmetry breaking and symmetry conserving
solutions above 4.5 a∗0. The symmetry conserving solu-
tion is calculated with the spin-compensated DFT within
the LDA. At large inter-dot distances the energy of the
symmetry breaking Sz = 0 state and that of the Sz = 1
state approach each other. The total energy curve be-
haves as 1/d since the dots are well separated and the
total energy is dominated by the Coulomb repulsion be-
tween the two dots. This is the regime where the tunneling
probability of the electrons through the potential barrier
V = 1/8m∗ω2

0a
2 is negligible. There is a cusp in the en-

ergy curve at around d = 4.5 a∗0 where the transition to
the localized states happens. The cusp is an indication
that the LSDA is not a good approximation in this in-
termediate region but gives the correct behaviour away
from this region. The symmetry-breaking SDFT results
give the correct prediction that the singlet state is lower
in energy than the triplet state, and reproduce also in the
large-separation limit the equality of the singlet and triplet
state energies. The qualitative behaviour of the DFT-LDA
result is the same as that obtained by Wensauer et al. [17]
who excluded the symmetry breaking solutions explicitly
in their calculations.

The calculated singlet-triplet separation is compared
with the variational Quantum Monte Carlo result in Fig-
ure 7b. To check the accuracy of the VMC, we have per-
formed diffusion QMC simulations for the S = 0 state at
various distances [41]. The lowering of the energy from the
VMC to the diffusion quantum Monte Carlo is found to be
small, only about 0.02 meV. At small distances the SDFT
and VMC results are in a remarkable agreement, strength-
ening the conclusion that the exchange-correlation effects
for the spin-compensated and totally spin-polarized gas
are well described in the LSDA. The fact that after the
symmetry break the SDFT results are above the VMC
ones may reflect the fact that the symmetry breaking low-
ers the singlet-state energy too much in comparison to the
symmetry-conserving VMC. In conclusion, the symmetry-
unrestricted SDFT gives a better approximation for the
ground state energy of the double dot molecule than the
symmetry-conserving DFT. The symmetry conserving so-
lution is unphysical at large inter-dot distances. Our con-
clusions are in accord with the results by Gunnarsson and
Lundqvist who studied the dissociation of the H2 molecule
within the SDFT and the DFT [6].

We have calculated the magnetic field dependence of
the Sz = 0 and Sz = 1 states for the double dot with
the separation of d = 2.73 a∗0 up to the magnetic field
strength of 6 T. The resulting singlet-triplet separation
is plotted in Figure 8. The CSDFT predicts a transition
from the singlet configuration to the triplet configuration
at B = 1.5 T. The symmetry of the Sz = 0 solution of
the CSDFT state is broken at B = 2.2 T. Thereafter the
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Fig. 8. Two-electron double dot. The inter-dot distance is 2.73
a∗0 and the confinement strengths of the dots are ~ω0 = 3 meV.
The singlet-triplet separation (solid line) is given as a function
of the external magnetic field B. The calculations were done
using the CSDFT within the LSDA. The results corresponding
to the symmetry-preserving, spin-compensated CSDFT-LDA
are also shown (dashed line). The magnitude of the Zeeman
term is also plotted (dash-dotted line).

separation shows a minimum at B = 2.5 T. After this
point the Zeeman energy dominates the high energy be-
haviour of the singlet-triplet splitting. If the Zeeman term
is ignored in the energy functionals the singlet state be-
comes the ground state again at B ≈ 4 T, there is a
maximum in the separation at B = 4.7 T, and finally
the separation vanishes at the high field limit. Inclusion
of the Zeeman term lowers the energy of the triplet state.
In this case the separation vanishes at B = 4.7 T and at
the high field limit the triplet becomes again the ground-
state. The above picture is qualitatively consistent with
the Heitler-London and Hund-Mulliken calculations [18].
A closer quantitative comparison is difficult due to the
quite large scatter also between the Heitler-London and
Hund-Mulliken results. However, on the basis of the good
agreement between the CSDFT and VMC results before
the symmetry breaking in Figure 8 and in the zero-field
case with electron localization in Figure 7b, we believe
that our CSDFT results should be even quantitatively reli-
able at low magnetic field strengths. Especially, this holds
for the position of the transition from the singlet to triplet
state. This transition is important, because it makes the
quantum dot molecule a possible candidate for a qubit of
future quantum computers.

We show in Figure 8 also the results of the CS-
DFT calculations obtained by using the spin-compensated
CSDFT-LDA preserving the symmetry of the electron
configuration. This scheme does not show a minimum
value for the singlet-triplet separation, but the high-field
limit can be considered as a very rough lower-bound
approximation for the minimum and can be compared,
for example, with the Heitler-London and Hund-Mulliken
results.
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According to the theory by von Barth [42] the
symmetry-breaking solution for a two-electron system
such as the present double quantum dot corresponds to
a mixed state arising from the Slater determinants of the
states S = 0, Sz = 0 and S = 1, Sz = 0. The singlet-
triplet separation can in this scheme be approximated by
doubling the energy separation of the symmetry-breaking
Sz = 0 and the Sz = 1 solutions. If this scheme is
applied in the case of the double-dot in magnetic field
the depth of the minimum doubled. The results of the
von Barth scheme is thus in a better agreement with
the Hund-Mulliken results than those of Figure 8. It is
also interesting to note that applying symmetrisation to
the unrestricted HF results for a two-electron double dot
approximately doubles the singlet-triplet separation [14].
However, the fact that doubling the singlet-triplet sepa-
ration in the symmetry-break regime in our zero-field re-
sults (Fig. 7) increases the discrepancy between SDFT and
VMC, sheds a shadow on the generality of the von Barth
scheme.

7 Summary and outlook

We have performed density-functional (CSDFT and
SDFT) calculations for the six-electron quantum dot and
for the H2 quantum dot molecule. The calculations are
based on a symmetry-unrestricted solution of the Kohn-
Sham equations using a novel real-space method. The re-
sults are compared with those arising from VMC calcula-
tions, performed in this work or published earlier.

We can conclude that the exchange-correlation effects
are rather well taken into account in the density-functional
schemes: (i) At the limit of the vanishing confinement in
the zero magnetic field the SDFT and VMC total energies
are in agreement, predicting a phase transition from the
paramagnetic state to the totally spin-polarized state. In
this region the SDFT shows the breaking of the spin sym-
metry and the circular symmetry of the electron density.
(ii) The CSDFT predicts for the six-electron quantum dot
the transitions between different angular momentum and
spin states as a function of the external magnetic field in
agreement with the VMC. The CSDFT is, as expected,
more accurate in the high field limit than the SDFT since
the effect of currents are ignored in the SDFT exchange-
correlation functional. (iii) At small interdot distances the
SDFT results for the singlet-triplet energy separation of
the H2 quantum dot molecule in zero magnetic field are in
a quantitative agreement with those obtained by the VMC
method. At large interdot distances the spin symmetry is
broken in the SDFT. The singlet-triplet energy separation
predicted by the SDFT and the VMC are in a qualitative
agreement in this regime. As a function of the external
magnetic field the CSDFT, allowing the spin symmetry
to be broken, gives the correct qualitative behaviour in
comparison with other theoretical models.

The agreement between the density-functional and the
VMC results is especially good for spin-compensated and
totally spin-polarized electron systems. This is true for the
regime of finite magnetic field with the CSDFT as well as

for the zero magnetic field when the CSDFT reduces to
the SDFT. The success of the CSDFT in obtaining correct
results depends, however, on the chosen approximations
for the exchange and correlation functionals. Search for
a correct parametrization of the LSDA functionals and
approximations beyond the LSDA in the CSDFT should
therefore be important for the future improvements in the
electronic structure calculations of quantum dots.
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41. A. Harju, S. Siljamäki, R.M. Nieminen, unpublished.
42. U. von Barth, Phys. Rev. A 20, 1693 (1979).
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